Coverage for local_installation_linux/mumott/optimization/regularizers/l1_norm.py: 87%
33 statements
« prev ^ index » next coverage.py v7.3.2, created at 2025-05-05 21:21 +0000
« prev ^ index » next coverage.py v7.3.2, created at 2025-05-05 21:21 +0000
1import numpy as np
2from numpy.typing import NDArray
4from mumott.optimization.regularizers.base_regularizer import Regularizer
5import logging
6logger = logging.getLogger(__name__)
9class L1Norm(Regularizer):
11 r"""Regularizes using the :math:`L_1` norm of the coefficient vector, also known as the
12 Manhattan or taxicab norm.
13 Suitable for scalar fields or tensor fields in local representations. Tends to reduce noise.
15 The :math:`L_1` norm of a vector :math:`x` is given by :math:`\sum{\vert x \vert}`.
17 See also `this Wikipedia article <https://en.wikipedia.org/wiki/Taxicab_geometry>`_.
18 """
20 def __init__(self):
21 super().__init__()
23 def get_regularization_norm(self,
24 coefficients: NDArray[float],
25 get_gradient: bool = False,
26 gradient_part: str = None) -> dict[str, NDArray[float]]:
27 """Retrieves the :math:`L_1` norm, also called the Manhattan or taxicab norm, of the
28 coefficients. Appropriate for use with scalar fields or tensor fields in local basis sets.
30 Parameters
31 ----------
32 coefficients
33 An ``np.ndarray`` of values, with shape ``(X, Y, Z, W)``, where
34 the last channel contains, e.g., tensor components.
35 get_gradient
36 If ``True``, returns a ``'gradient'`` of the same shape as :attr:`coefficients`.
37 Otherwise the entry ``'gradient'`` will be ``None``. Defaults to ``False``.
38 gradient_part
39 Used for the zonal harmonics resonstructions to determine what part of the gradient is
40 being calculated. Default is None. If a flag is passed in ('full', 'angles', 'coefficients'),
41 we assume that the ZH workflow is used and that the last two coefficients are euler angles,
42 which should not be regularized by this regularizer.
44 Returns
45 -------
46 A dictionary with two entries, ``regularization_norm`` and ``gradient``.
47 """
49 result = dict(regularization_norm=None, gradient=None)
50 if get_gradient:
52 if gradient_part is None:
53 result['gradient'] = np.sign(coefficients)
54 elif gradient_part in ('full', 'coefficients'):
55 result['gradient'] = np.sign(coefficients)
56 result['gradient'][..., -2:] = 0
57 elif gradient_part in ('angles'): 57 ↛ 60line 57 didn't jump to line 60, because the condition on line 57 was never false
58 result['gradient'] = np.zeros(coefficients.shape)
59 else:
60 logger.warning('Unexpected argument given for gradient part.')
61 raise ValueError
63 if gradient_part is None:
64 result['regularization_norm'] = np.sum(np.abs(coefficients))
65 elif gradient_part in ('full', 'coefficients', 'angles'): 65 ↛ 68line 65 didn't jump to line 68, because the condition on line 65 was never false
66 result['regularization_norm'] = np.sum(np.abs(coefficients[..., :-2]))
67 else:
68 logger.warning('Unexpected argument given for gradient part.')
69 raise ValueError
71 return result
73 @property
74 def _function_as_str(self) -> str:
75 return 'R(x) = lambda * abs(x)'
77 @property
78 def _function_as_tex(self) -> str:
79 return r'$R(\vec{x}) = \lambda \Vert \vec{x} \Vert_1$'